Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338689

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a hematological cancer characterized by the infiltration of immature T-cells in the bone marrow. Aberrant NOTCH signaling in T-ALL is mainly triggered by activating mutations of NOTCH1 and overexpression of NOTCH3, and rarely is it linked to NOTCH3-activating mutations. Besides the known critical role of NOTCH, the nature of intrathymic microenvironment-dependent mechanisms able to render immature thymocytes, presumably pre-leukemic cells, capable of escaping thymus retention and infiltrating the bone marrow is still unclear. An important challenge is understanding how leukemic cells shape their tumor microenvironment to increase their ability to infiltrate and survive within. Our previous data indicated that hyperactive NOTCH3 affects the CXCL12/CXCR4 system and may interfere with T-cell/stroma interactions within the thymus. This study aims to identify the biological effects of the reciprocal interactions between human leukemic cell lines and thymic epithelial cell (TEC)-derived soluble factors in modulating NOTCH signaling and survival programs of T-ALL cells and TECs. The overarching hypothesis is that this crosstalk can influence the progressive stages of T-cell development driving T-cell leukemia. Thus, we investigated the effect of extracellular space conditioned by T-ALL cell lines (Jurkat, TALL1, and Loucy) and TECs and studied their reciprocal regulation of cell cycle and survival. In support, we also detected metabolic changes as potential drivers of leukemic cell survival. Our studies could shed light on T-cell/stroma crosstalk to human leukemic cells and propose our culture system to test pharmacological treatment for T-ALL.


Assuntos
Leucemia de Células T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Timo/metabolismo , Transdução de Sinais , Células Epiteliais/metabolismo , Leucemia de Células T/metabolismo , Apoptose , Proliferação de Células , Microambiente Tumoral
2.
Nat Commun ; 14(1): 8373, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102140

RESUMO

Rhabdomyosarcomas (RMS) are pediatric mesenchymal-derived malignancies encompassing PAX3/7-FOXO1 Fusion Positive (FP)-RMS, and Fusion Negative (FN)-RMS with frequent RAS pathway mutations. RMS express the master myogenic transcription factor MYOD that, whilst essential for survival, cannot support differentiation. Here we discover SKP2, an oncogenic E3-ubiquitin ligase, as a critical pro-tumorigenic driver in FN-RMS. We show that SKP2 is overexpressed in RMS through the binding of MYOD to an intronic enhancer. SKP2 in FN-RMS promotes cell cycle progression and prevents differentiation by directly targeting p27Kip1 and p57Kip2, respectively. SKP2 depletion unlocks a partly MYOD-dependent myogenic transcriptional program and strongly affects stemness and tumorigenic features and prevents in vivo tumor growth. These effects are mirrored by the investigational NEDDylation inhibitor MLN4924. Results demonstrate a crucial crosstalk between transcriptional and post-translational mechanisms through the MYOD-SKP2 axis that contributes to tumorigenesis in FN-RMS. Finally, NEDDylation inhibition is identified as a potential therapeutic vulnerability in FN-RMS.


Assuntos
Rabdomiossarcoma , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Fatores de Transcrição , Transformação Celular Neoplásica , Diferenciação Celular
3.
Am J Transplant ; 23(9): 1446-1450, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37061187

RESUMO

Hematopoietic stem cell transplantation (HSCT)-based approaches are increasingly investigated strategies to induce tolerance in recipients of solid allografts. However, in the majority of cases, these approaches rely on the infusion of hematopoietic stem cells recovered from the same solid organ donor. In this report, we describe the case of a boy who received liver transplantation from a deceased donor, who had successfully underwent allogeneic HSCT from an unrelated donor for hepatitis-associated aplastic anemia. In this patient, it was possible to permanently withdraw post-HSCT immune suppression without causing any sign of liver graft dysfunction. To the best of our knowledge, this is the first case of operational tolerance documented in a patient who received combined liver transplantation and HSCT from different donors.


Assuntos
Anemia Aplástica , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Transplante de Fígado , Masculino , Humanos , Criança , Transplante de Fígado/efeitos adversos , Doadores de Tecidos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Tolerância Imunológica , Transplante Homólogo/efeitos adversos , Anemia Aplástica/etiologia , Doença Enxerto-Hospedeiro/etiologia
4.
J Allergy Clin Immunol ; 151(4): 911-921, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758836

RESUMO

BACKGROUND: Lymphopenia, particularly when restricted to the T-cell compartment, has been described as one of the major clinical hallmarks in patients with coronavirus disease 2019 (COVID-19) and proposed as an indicator of disease severity. Although several mechanisms fostering COVID-19-related lymphopenia have been described, including cell apoptosis and tissue homing, the underlying causes of the decline in T-cell count and function are still not completely understood. OBJECTIVE: Given that viral infections can directly target thymic microenvironment and impair the process of T-cell generation, we sought to investigate the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on thymic function. METHODS: We performed molecular quantification of T-cell receptor excision circles and κ-deleting recombination excision circles to assess, respectively, T- and B-cell neogenesis in SARS-CoV-2-infected patients. We developed a system for in vitro culture of primary human thymic epithelial cells (TECs) to mechanistically investigate the impact of SARS-CoV-2 on TEC function. RESULTS: We showed that patients with COVID-19 had reduced thymic function that was inversely associated with the severity of the disease. We found that angiotensin-converting enzyme 2, through which SARS-CoV-2 enters the host cells, was expressed by thymic epithelium, and in particular by medullary TECs. We also demonstrated that SARS-CoV-2 can target TECs and downregulate critical genes and pathways associated with epithelial cell adhesion and survival. CONCLUSIONS: Our data demonstrate that the human thymus is a target of SARS-CoV-2 and thymic function is altered following infection. These findings expand our current knowledge of the effects of SARS-CoV-2 infection on T-cell homeostasis and suggest that monitoring thymic activity may be a useful marker to predict disease severity and progression.


Assuntos
COVID-19 , Linfopenia , Humanos , COVID-19/metabolismo , SARS-CoV-2 , Timo , Linfopenia/genética , Gravidade do Paciente
5.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711570

RESUMO

Endogenous thymic regeneration is a crucial process that allows for the renewal of immune competence following stress, infection or cytoreductive conditioning. Fully understanding the molecular mechanisms driving regeneration will uncover therapeutic targets to enhance regeneration. We previously demonstrated that high levels of homeostatic apoptosis suppress regeneration and that a reduction in the presence of damage-induced apoptotic thymocytes facilitates regeneration. Here we identified that cell-specific metabolic remodeling after ionizing radiation steers thymocytes towards mitochondrial-driven pyroptotic cell death. We further identified that a key damage-associated molecular pattern (DAMP), ATP, stimulates the cell surface purinergic receptor P2Y2 on cortical thymic epithelial cells (cTECs) acutely after damage, enhancing expression of Foxn1, the critical thymic transcription factor. Targeting the P2Y2 receptor with the agonist UTPγS promotes rapid regeneration of the thymus in vivo following acute damage. Together these data demonstrate that intrinsic metabolic regulation of pyruvate processing is a critical process driving thymus repair and identifies the P2Y2 receptor as a novel molecular therapeutic target to enhance thymus regeneration.

6.
J Hematol Oncol ; 15(1): 163, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335396

RESUMO

BACKGROUND: Paediatric acute myeloid leukaemia (AML) is characterized by poor outcomes in patients with relapsed/refractory disease, despite the improvements in intensive standard therapy. The leukaemic cells of paediatric AML patients show high expression of the CD123 antigen, and this finding provides the biological basis to target CD123 with the chimeric antigen receptor (CAR). However, CAR.CD123 therapy in AML is hampered by on-target off-tumour toxicity and a long "vein-to-vein" time. METHODS: We developed an off-the-shelf product based on allogeneic natural killer (NK) cells derived from the peripheral blood of healthy donors and engineered them to express a second-generation CAR targeting CD123 (CAR.CD123). RESULTS: CAR.CD123-NK cells showed significant anti-leukaemia activity not only in vitro against CD123+ AML cell lines and CD123+ primary blasts but also in two animal models of human AML-bearing immune-deficient mice. Data on anti-leukaemia activity were also corroborated by the quantification of inflammatory cytokines, namely granzyme B (Granz B), interferon gamma (IFN-γ) and tumour necrosis factor alpha (TNF-α), both in vitro and in the plasma of mice treated with CAR.CD123-NK cells. To evaluate and compare the on-target off-tumour effects of CAR.CD123-T and NK cells, we engrafted human haematopoietic cells (hHCs) in an immune-deficient mouse model. All mice infused with CAR.CD123-T cells died by Day 5, developing toxicity against primary human bone marrow (BM) cells with a decreased number of total hCD45+ cells and, in particular, of hCD34+CD38- stem cells. In contrast, treatment with CAR.CD123-NK cells was not associated with toxicity, and all mice were alive at the end of the experiments. Finally, in a mouse model engrafted with human endothelial tissues, we demonstrated that CAR.CD123-NK cells were characterized by negligible endothelial toxicity when compared to CAR.CD123-T cells. CONCLUSIONS: Our data indicate the feasibility of an innovative off-the-shelf therapeutic strategy based on CAR.CD123-NK cells, characterized by remarkable efficacy and an improved safety profile compared to CAR.CD123-T cells. These findings open a novel intriguing scenario not only for the treatment of refractory/resistant AML patients but also to further investigate the use of CAR-NK cells in other cancers characterized by highly difficult targeting with the most conventional T effector cells.


Assuntos
Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Criança , Humanos , Camundongos , Animais , Subunidade alfa de Receptor de Interleucina-3 , Receptores de Antígenos Quiméricos/uso terapêutico , Receptores de Antígenos Quiméricos/metabolismo , Leucemia Mieloide Aguda/patologia , Imunoterapia Adotiva/efeitos adversos , Células Matadoras Naturais , Linhagem Celular Tumoral
7.
Blood ; 140(22): 2323-2334, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35984965

RESUMO

Allogeneic hematopoietic transplantation is a powerful treatment for hematologic malignancies. Posttransplant immune incompetence exposes patients to disease relapse and infections. We previously demonstrated that donor alloreactive natural killer (NK) cells ablate recipient hematopoietic targets, including leukemia. Here, in murine models, we show that infusion of donor alloreactive NK cells triggers recipient dendritic cells (DCs) to synthesize ß-2-microglobulin (B2M) that elicits the release of c-KIT ligand and interleukin-7 that greatly accelerate posttransplant immune reconstitution. An identical chain of events was reproduced by infusing supernatants of alloreactive NK/DC cocultures. Similarly, human alloreactive NK cells triggered human DCs to synthesize B2M that induced interleukin-7 production by thymic epithelial cells and thereby supported thymocyte cellularity in vitro. Chromatography fractionation of murine and human alloreactive NK/DC coculture supernatants identified a protein with molecular weight and isoelectric point of B2M, and mass spectrometry identified amino acid sequences specific of B2M. Anti-B2M antibody depletion of NK/DC coculture supernatants abrogated their immune-rebuilding effect. B2M knock-out mice were unable to undergo accelerated immune reconstitution, but infusion of (wild-type) NK/DC coculture supernatants restored their ability to undergo accelerated immune reconstitution. Similarly, silencing the B2M gene in human DCs, before coculture with alloreactive NK cells, prevented the increase in thymocyte cellularity in vitro. Finally, human recombinant B2M increased thymocyte cellularity in a thymic epithelial cells/thymocyte culture system. Our studies uncover a novel therapeutic principle for treating posttransplant immune incompetence and suggest that, upon its translation to the clinic, patients may benefit from adoptive transfer of large numbers of cytokine-activated, ex vivo-expanded donor alloreactive NK cells.


Assuntos
Neoplasias Hematológicas , Interleucina-7 , Animais , Humanos , Camundongos , Transplante de Medula Óssea , Células Matadoras Naturais , Transplante Homólogo , Microglobulina beta-2/imunologia
8.
Front Immunol ; 13: 920306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734178

RESUMO

Optimal recovery of immune competence after periods of hematopoietic insults or stress is crucial to re-establish patient response to vaccines, pathogens and tumor antigens. This is particularly relevant for patients receiving high doses of chemotherapy or radiotherapy, who experience prolonged periods of lymphopenia, which can be associated with an increased risk of infections, malignant relapse, and adverse clinical outcome. While the thymus represents the primary organ responsible for the generation of a diverse pool of T cells, its function is profoundly impaired by a range of acute insults (including those caused by cytoreductive chemo/radiation therapy, infections and graft-versus-host disease) and by the chronic physiological deterioration associated with aging. Impaired thymic function increases the risk of infections and tumor antigen escape due to a restriction in T-cell receptor diversity and suboptimal immune response. Therapeutic approaches that can promote the renewal of the thymus have the potential to restore immune competence in patients. Previous work has documented the importance of the crosstalk between thymocytes and thymic epithelial cells in establishing correct architecture and function of thymic epithelium. This crosstalk is relevant not only during thymus organogenesis, but also to promote the recovery of its function after injuries. In this review, we will analyze the signals involved in the crosstalk between TECs and hematopoietic cells. We will focus in particular on how signals from T-cells can regulate TEC function and discuss the relevance of these pathways in restoring thymic function and T-cell immunity in experimental models, as well as in the clinical setting.


Assuntos
Doença Enxerto-Hospedeiro , Células Epiteliais , Doença Enxerto-Hospedeiro/prevenção & controle , Humanos , Regeneração , Transdução de Sinais , Timócitos/metabolismo , Timo
9.
Front Immunol ; 12: 752042, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899700

RESUMO

The capacity of T cells to recognize and mount an immune response against tumor antigens depends on the large diversity of the T-cell receptor (TCR) repertoire generated in the thymus during the process of T-cell development. However, this process is dramatically impaired by immunological insults, such as that caused by cytoreductive cancer therapies and infections, and by the physiological decline of thymic function with age. Defective thymic function and a skewed TCR repertoire can have significant clinical consequences. The presence of an adequate pool of T cells capable of recognizing specific tumor antigens is a prerequisite for the success of cancer immunotherapy using checkpoint blockade therapy. However, while this approach has improved the chances of survival of patients with different types of cancer, a large proportion of them do not respond. The limited response rate to checkpoint blockade therapy may be linked to a suboptimal TCR repertoire in cancer patients prior to therapy. Here, we focus on the role of the thymus in shaping the T-cell pool in health and disease, discuss how the TCR repertoire influences patients' response to checkpoint blockade therapy and highlight approaches able to manipulate thymic function to enhance anti-tumor immunity.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Receptores de Antígenos de Linfócitos T/imunologia , Timo/imunologia , Humanos , Linfócitos T/imunologia , Resultado do Tratamento
10.
Acta Neuropathol ; 142(3): 537-564, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34302498

RESUMO

Medulloblastoma (MB) is a childhood malignant brain tumour comprising four main subgroups characterized by different genetic alterations and rate of mortality. Among MB subgroups, patients with enhanced levels of the c-MYC oncogene (MBGroup3) have the poorest prognosis. Here we identify a previously unrecognized role of the pro-autophagy factor AMBRA1 in regulating MB. We demonstrate that AMBRA1 expression depends on c-MYC levels and correlates with Group 3 patient poor prognosis; also, knockdown of AMBRA1 reduces MB stem potential, growth and migration of MBGroup3 stem cells. At a molecular level, AMBRA1 mediates these effects by suppressing SOCS3, an inhibitor of STAT3 activation. Importantly, pharmacological inhibition of autophagy profoundly affects both stem and invasion potential of MBGroup3 stem cells, and a combined anti-autophagy and anti-STAT3 approach impacts the MBGroup3 outcome. Taken together, our data support the c-MYC/AMBRA1/STAT3 axis as a strong oncogenic signalling pathway with significance for both patient stratification strategies and targeted treatments of MBGroup3.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Autofagia/efeitos dos fármacos , Neoplasias Cerebelares/tratamento farmacológico , Meduloblastoma/tratamento farmacológico , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Criança , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas , Prognóstico , Proteínas Proto-Oncogênicas c-myc/biossíntese , Proteínas Proto-Oncogênicas c-myc/genética , Proteína 3 Supressora da Sinalização de Citocinas/antagonistas & inibidores
11.
Semin Immunopathol ; 43(1): 101-117, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33416938

RESUMO

As the thymus represents the primary site of T-cell development, optimal thymic function is of paramount importance for the successful reconstitution of the adaptive immunity after allogeneic hematopoietic stem cell transplantation. Thymus involutes as part of the aging process and several factors, including previous chemotherapy treatments, conditioning regimen used in preparation to the allograft, occurrence of graft-versus-host disease, and steroid therapy that impair the integrity of the thymus, thus affecting its role in supporting T-cell neogenesis. Although the pathways governing its regeneration are still poorly understood, the thymus has a remarkable capacity to recover its function after damage. Measurement of both recent thymic emigrants and T-cell receptor excision circles is valuable tools to assess thymic output and gain insights on its function. In this review, we will extensively discuss available data on factors regulating thymic function after allogeneic hematopoietic stem cell transplantation, as well as the strategies and therapeutic approaches under investigation to promote thymic reconstitution and accelerate immune recovery in transplanted patients, including the use of cytokines, sex-steroid ablation, precursor T-cells, and thymus bioengineering. Although none of them is routinely used in the clinic, these approaches have the potential to enhance thymic function and immune recovery, not only in patients given an allograft but also in other conditions characterized by immune deficiencies related to a defective function of the thymus.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Transplante de Medula Óssea , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Linfócitos T , Transplante Homólogo
12.
Nat Rev Immunol ; 21(5): 277-291, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33097917

RESUMO

Following periods of haematopoietic cell stress, such as after chemotherapy, radiotherapy, infection and transplantation, patient outcomes are linked to the degree of immune reconstitution, specifically of T cells. Delayed or defective recovery of the T cell pool has significant clinical consequences, including prolonged immunosuppression, poor vaccine responses and increased risks of infections and malignancies. Thus, strategies that restore thymic function and enhance T cell reconstitution can provide considerable benefit to individuals whose immune system has been decimated in various settings. In this Review, we focus on the causes and consequences of impaired adaptive immunity and discuss therapeutic strategies that can recover immune function, with a particular emphasis on approaches that can promote a diverse repertoire of T cells through de novo T cell formation.


Assuntos
Regeneração/imunologia , Linfócitos T/imunologia , Imunidade Adaptativa , Animais , Linfócitos B/imunologia , Linfócitos B/fisiologia , Microambiente Celular/imunologia , Microambiente Celular/fisiologia , Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Imunossenescência , Imunoterapia , Linfopenia/imunologia , Linfopenia/terapia , Modelos Imunológicos , Regeneração/fisiologia , Estresse Fisiológico/imunologia , Estresse Fisiológico/fisiologia , Linfócitos T/fisiologia
13.
Blood ; 132(26): 2763-2774, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30381375

RESUMO

Nuclear factor erythroid-derived 2-like 2 (Nrf2) is a ubiquitously expressed transcription factor that is well known for its role in regulating the cellular redox pathway. Although there is mounting evidence suggesting a critical role for Nrf2 in hematopoietic stem cells and innate leukocytes, little is known about its involvement in T-cell biology. In this study, we identified a novel role for Nrf2 in regulating alloreactive T-cell function during allogeneic hematopoietic cell transplantation (allo-HCT). We observed increased expression and nuclear translocation of Nrf2 upon T-cell activation in vitro, especially in CD4+ donor T cells after allo-HCT. Allo-HCT recipients of Nrf2 -/- donor T cells had significantly less acute graft-versus-host disease (GVHD)-induced mortality, morbidity, and pathology. This reduction in GVHD was associated with the persistence of Helios+ donor regulatory T cells in the allograft, as well as defective upregulation of the gut-homing receptor LPAM-1 on alloreactive CD8+ T cells. Additionally, Nrf2 -/- donor CD8+ T cells demonstrated intact cytotoxicity against allogeneic target cells. Tumor-bearing allo-HCT recipients of Nrf2 -/- donor T cells had overall improved survival as a result of preserved graft-versus-tumor activity and reduced GVHD activity. Our findings characterized a previously unrecognized role for Nrf2 in T-cell function, as well as revealed a novel therapeutic target to improve the outcomes of allo-HCT.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas , Ativação Linfocitária , Fator 2 Relacionado a NF-E2/imunologia , Neoplasias Experimentais/imunologia , Doença Aguda , Aloenxertos , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/patologia , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia
15.
Cell Host Microbe ; 23(4): 447-457.e4, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29576480

RESUMO

Bone marrow transplantation (BMT) offers curative potential for patients with high-risk hematologic malignancies, but the post-transplantation period is characterized by profound immunodeficiency. Recent studies indicate that the intestinal microbiota not only regulates mucosal immunity, but can also contribute to systemic immunity and hematopoiesis. Using antibiotic-mediated microbiota depletion in a syngeneic BMT mouse model, here we describe a role for the intestinal flora in hematopoietic recovery after BMT. Depletion of the intestinal microbiota resulted in impaired recovery of lymphocyte and neutrophil counts, while recovery of the hematopoietic stem and progenitor compartments and the erythroid lineage were largely unaffected. Depletion of the intestinal microbiota also reduced dietary energy uptake and visceral fat stores. Caloric supplementation through sucrose in the drinking water improved post-BMT hematopoietic recovery in mice with a depleted intestinal flora. Taken together, we show that the intestinal microbiota contribute to post-BMT hematopoietic reconstitution in mice through improved dietary energy uptake.


Assuntos
Transplante de Medula Óssea , Microbioma Gastrointestinal , Apoio Nutricional , Animais , Medula Óssea/fisiologia , Hematopoese , Camundongos , Modelos Animais , Resultado do Tratamento
16.
Sci Immunol ; 3(19)2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330161

RESUMO

The thymus is not only extremely sensitive to damage but also has a remarkable ability to repair itself. However, the mechanisms underlying this endogenous regeneration remain poorly understood, and this capacity diminishes considerably with age. We show that thymic endothelial cells (ECs) comprise a critical pathway of regeneration via their production of bone morphogenetic protein 4 (BMP4) ECs increased their production of BMP4 after thymic damage, and abrogating BMP4 signaling or production by either pharmacologic or genetic inhibition impaired thymic repair. EC-derived BMP4 acted on thymic epithelial cells (TECs) to increase their expression of Foxn1, a key transcription factor involved in TEC development, maintenance, and regeneration, and its downstream targets such as Dll4, a key mediator of thymocyte development and regeneration. These studies demonstrate the importance of the BMP4 pathway in endogenous tissue regeneration and offer a potential clinical approach to enhance T cell immunity.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Células Endoteliais/metabolismo , Regeneração/fisiologia , Timo/metabolismo , Timo/fisiologia , Animais , Proliferação de Células/fisiologia , Células Endoteliais/fisiologia , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Feminino , Fatores de Transcrição Forkhead/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Linfócitos T/metabolismo , Linfócitos T/fisiologia
17.
Nat Med ; 24(2): 239-246, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29309056

RESUMO

There is a substantial unmet clinical need for new strategies to protect the hematopoietic stem cell (HSC) pool and regenerate hematopoiesis after radiation injury from either cancer therapy or accidental exposure. Increasing evidence suggests that sex hormones, beyond their role in promoting sexual dimorphism, regulate HSC self-renewal, differentiation, and proliferation. We and others have previously reported that sex-steroid ablation promotes bone marrow (BM) lymphopoiesis and HSC recovery in aged and immunodepleted mice. Here we found that a luteinizing hormone (LH)-releasing hormone antagonist (LHRH-Ant), currently in wide clinical use for sex-steroid inhibition, promoted hematopoietic recovery and mouse survival when administered 24 h after an otherwise-lethal dose of total-body irradiation (L-TBI). Unexpectedly, this protective effect was independent of sex steroids and instead relied on suppression of LH levels. Human and mouse long-term self-renewing HSCs (LT-HSCs) expressed high levels of the LH/choriogonadotropin receptor (LHCGR) and expanded ex vivo when stimulated with LH. In contrast, the suppression of LH after L-TBI inhibited entry of HSCs into the cell cycle, thus promoting HSC quiescence and protecting the cells from exhaustion. These findings reveal a role of LH in regulating HSC function and offer a new therapeutic approach for hematopoietic regeneration after hematopoietic injury.


Assuntos
Autorrenovação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Hormônio Luteinizante/metabolismo , Lesões Experimentais por Radiação/tratamento farmacológico , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos da radiação , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Hematopoese/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos da radiação , Humanos , Hormônio Luteinizante/farmacologia , Camundongos , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Receptores do LH/genética , Regeneração/efeitos dos fármacos , Regeneração/genética , Regeneração/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Irradiação Corporal Total
18.
Blood ; 130(7): 933-942, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28607133

RESUMO

Graft-versus-host disease (GVHD) and posttransplant immunodeficiency are frequently related complications of allogeneic hematopoietic transplantation. Alloreactive donor T cells can damage thymic epithelium, thus limiting new T-cell development. Although the thymus has a remarkable capacity to regenerate after injury, endogenous thymic regeneration is impaired in GVHD. The mechanisms leading to this regenerative failure are largely unknown. Here we demonstrate in experimental mouse models that GVHD results in depletion of intrathymic group 3 innate lymphoid cells (ILC3s) necessary for thymic regeneration. Loss of thymic ILC3s resulted in deficiency of intrathymic interleukin-22 (IL-22) compared with transplant recipients without GVHD, thereby inhibiting IL-22-mediated protection of thymic epithelial cells (TECs) and impairing recovery of thymopoiesis. Conversely, abrogating IL-21 receptor signaling in donor T cells and inhibiting the elimination of thymic ILCs improved thymopoiesis in an IL-22-dependent fashion. We found that the thymopoietic impairment in GVHD associated with loss of ILCs could be improved by restoration of IL-22 signaling. Despite uninhibited alloreactivity, exogenous IL-22 administration posttransplant resulted in increased recovery of thymopoiesis and development of new thymus-derived peripheral T cells. Our study highlights the role of innate immune function in thymic regeneration and restoration of adaptive immunity posttransplant. Manipulation of the ILC-IL-22-TEC axis may be useful for augmenting immune reconstitution after clinical hematopoietic transplantation and other settings of T-cell deficiency.


Assuntos
Doença Enxerto-Hospedeiro/imunologia , Imunidade Inata , Linfócitos/imunologia , Timo/imunologia , Animais , Transplante de Medula Óssea , Interleucinas/deficiência , Interleucinas/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução de Sinais , Linfócitos T Reguladores/imunologia
19.
Sci Transl Med ; 9(386)2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28424327

RESUMO

The molecular pathways that regulate the tissue repair function of type I interferon (IFN-I) during acute tissue damage are poorly understood. We describe a protective role for IFN-I and the RIG-I/MAVS signaling pathway during acute tissue damage in mice. Mice lacking mitochondrial antiviral-signaling protein (MAVS) were more sensitive to total body irradiation- and chemotherapy-induced intestinal barrier damage. These mice developed worse graft-versus-host disease (GVHD) in a preclinical model of allogeneic hematopoietic stem cell transplantation (allo-HSCT) than did wild-type mice. This phenotype was not associated with changes in the intestinal microbiota but was associated with reduced gut epithelial integrity. Conversely, targeted activation of the RIG-I pathway during tissue injury promoted gut barrier integrity and reduced GVHD. Recombinant IFN-I or IFN-I expression induced by RIG-I promoted growth of intestinal organoids in vitro and production of the antimicrobial peptide regenerating islet-derived protein 3 γ (RegIIIγ). Our findings were not confined to RIG-I/MAVS signaling because targeted engagement of the STING (stimulator of interferon genes) pathway also protected gut barrier function and reduced GVHD. Consistent with this, STING-deficient mice suffered worse GVHD after allo-HSCT than did wild-type mice. Overall, our data suggest that activation of either RIG-I/MAVS or STING pathways during acute intestinal tissue injury in mice resulted in IFN-I signaling that maintained gut epithelial barrier integrity and reduced GVHD severity. Targeting these pathways may help to prevent acute intestinal injury and GVHD during allogeneic transplantation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína DEAD-box 58/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteína DEAD-box 58/genética , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/metabolismo , Transplante de Células-Tronco Hematopoéticas , Interferon Tipo I/metabolismo , Intestinos/efeitos da radiação , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/fisiologia , Organoides/citologia , Organoides/metabolismo , Reação em Cadeia da Polimerase , Transdução de Sinais/fisiologia , Transplante Homólogo
20.
Nat Med ; 23(2): 242-249, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28067900

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematological malignancies. However, graft-versus-host disease (GVHD) and relapse after allo-HSCT remain major impediments to the success of allo-HSCT. Chimeric antigen receptors (CARs) direct tumor cell recognition of adoptively transferred T cells. CD19 is an attractive CAR target, which is expressed in most B cell malignancies, as well as in healthy B cells. Clinical trials using autologous CD19-targeted T cells have shown remarkable promise in various B cell malignancies. However, the use of allogeneic CAR T cells poses a concern in that it may increase risk of the occurrence of GVHD, although this has not been reported in selected patients infused with donor-derived CD19 CAR T cells after allo-HSCT. To understand the mechanism whereby allogeneic CD19 CAR T cells may mediate anti-lymphoma activity without causing a significant increase in the incidence of GVHD, we studied donor-derived CD19 CAR T cells in allo-HSCT and lymphoma models in mice. We demonstrate that alloreactive T cells expressing CD28-costimulated CD19 CARs experience enhanced stimulation, resulting in the progressive loss of both their effector function and proliferative potential, clonal deletion, and significantly decreased occurrence of GVHD. Concurrently, the other CAR T cells that were present in bulk donor T cell populations retained their anti-lymphoma activity in accordance with the requirement that both the T cell receptor (TCR) and CAR be engaged to accelerate T cell exhaustion. In contrast, first-generation and 4-1BB-costimulated CAR T cells increased the occurrence of GVHD. These findings could explain the reduced risk of GVHD occurring with cumulative TCR and CAR signaling.


Assuntos
Reação Enxerto-Hospedeiro/imunologia , Efeito Enxerto vs Tumor/imunologia , Transplante de Células-Tronco Hematopoéticas , Linfoma/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Ligante 4-1BB/imunologia , Transferência Adotiva , Animais , Antígenos CD19/metabolismo , Linfócitos B/imunologia , Antígenos CD28 , Quimera , Citocinas/imunologia , Modelos Animais de Doenças , Citometria de Fluxo , Doença Enxerto-Hospedeiro/imunologia , Camundongos , Linfócitos T/metabolismo , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...